

Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com

JEE MAINS-2019

09-01-2019 Online (Evening) JEE MAIN

IMPORTANT INSTRUCTIONS

ONLINE 09-01-2019 (EVENING)

- **1.** The test is of 3 hours duration.
- **2.** This Test Paper consists of **90 questions**. The maximum marks are 360.
- **3.** There are three parts in the question paper A, B, C consisting of **Physics, Mathematics and Chemistry** having 30 questions in each part of equal weightage. Each question is allotted 4 (four) marks for correct response.
- **4.** Out of the four options given for each question, only one option is the correct answer.
- **5.** For each incorrect response 1 mark i.e. ¼ (one-fourth) marks of the total marks allotted to the question will be deducted from the total score. No deduction from the total score, however, will be made if no response is indicated for an item in the Answer Box.
- **6.** Candidates will be awarded marks as stated above in instruction No.3 for correct response of each question. One mark will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer box.
- **7.** There is only one correct response for each question. Marked up more than one response in any question will be treated as wrong response and marked up for wrong response will be deducted accordingly as per instruction 6 above..

PART-A-PHYSICS

- **1.** A mass of 10 kg is suspended vertically by a rope from the roof. When a horizontal force is applied on the rope at some point, the rope deviated at an angle of 45° at the roof point. If the suspended mass is at equilibrium, the magnitude of the force applied is (g = 10 ms^{-2}) (1) 200 N (2^{*}) 100 N (3) 70 N (4) 140 N
- **Sol.** $T \cos 45^\circ = mg$ T sin 45° = F \Rightarrow F = mg = 100 N.
- **2.** Two point charges $q_1(\sqrt{10} \mu C)$ and $q_2(-25 \mu C)$ are placed on the x-axis at x = 1m and x = 4m respectively. The electric field (in V/m) at a point y = 3m on y-axis is [take \mathbf{c} $\frac{1}{4\pi\epsilon_0}$ = 9 × 10⁹ Nm²C⁻²] (1^*) $(63\hat{i} - 27\hat{j}) \times 10^2$ (2) $(-63\hat{i} + 27\hat{j}) \times 10^2$ (3) $(81\hat{i} - 81\hat{j}) \times 10^2$ (4) $(-81\hat{i} + 81\hat{j}) \times 10^2$

Sol.
$$
\vec{E} = \frac{kq_1}{e_1^3} \vec{r}_1 + \frac{kq_2}{r_2^3} \vec{r}_2 = k \times 10^{-6} \left[\frac{\sqrt{10}}{10\sqrt{10}} \left(-\hat{i} + 3\hat{j} \right) + \frac{(-25)}{125} \left(-4\hat{i} + 3\hat{j} \right) \right]
$$

$$
= (3 \times 10^3) \left[\frac{1}{10} \left(-\hat{i} + 3\hat{j} \right) - \frac{1}{5} \left(-4\hat{i} + 3\hat{j} \right) \right]
$$

$$
= (9 \times 10^3) \left[\left(-\frac{1}{10} + \frac{4}{2} \right) \hat{i} + \left(\frac{3}{10} - \frac{3}{5} \right) \hat{i} \right] = 9000 \left(\frac{7}{10} \hat{i} - \frac{3}{10} \hat{j} \right)
$$

$$
= (63\hat{i} - 27\hat{j})(100)
$$

3. At a given instant, say t = 0, two radioactive substances A and B have equal activities. The ratio $\frac{1.9}{1.6}$ A R $\frac{R_{B}}{R_{A}}$ of their activities after time t itself decays with time t as e–3t. If the half-life of A is *l*n2, the half-life of B is

3. At a given instant, say
$$
t = 0
$$
, two radioactive substances A and B have equal activit
\ntheir activities after time t itself decays with time t as e^{-3t} . If the half-life of A is $\ln 2$,
\n(1*) $\frac{\ln 2}{4}$
\n(2) $4\ln 2$
\n(3) $2\ln 2$
\n(4) $\frac{\ln 2}{4}$
\n(50I. $R = R_0 e^{-kt}$
\n $\therefore \frac{R_B}{R_A} = \frac{R_0 e^{-\lambda_B t}}{R_0 e^{-\lambda_B t}} = e^{-(\lambda_B - \lambda_A)t} = e^{-3t}$
\n $\Rightarrow \frac{\ln^2}{T_B} - \frac{\ln 2}{\ln 2} = 3$.
\n $\Rightarrow \frac{\ln^2}{T_B} - \frac{\ln 2}{\ln 2} = 3$.

4. A particle is executing simple harmonic motion (SHM) of amplitude A, along the x-axis, about x = 0. When its potential energy (PE) equals kinetic energy (KE), the position of the particle will be:

(1)
$$
\frac{A}{2\sqrt{2}}
$$
 (2*) $\frac{A}{\sqrt{2}}$ (3) A (4) $\frac{A}{2}$

Sol. PE = KE

$$
\Rightarrow \frac{1}{2} m \omega^2 (A^2 - x^2) = \frac{1}{2} m \omega^2 x^2
$$

$$
\Rightarrow \qquad x = \frac{A}{\sqrt{2}}
$$

5. A musician using an open flute of length 50 cm produces second harmonic sound waves. A person runs towards the musician from another end of a hall at a speed of 10 km/h. If the wave speed is 330 m/s, the

frequency heard by the running person shall be close to:

I.
$$
f = \frac{2}{2\ell} v_s = \frac{330}{0.5} = 660 Hz
$$

$$
\begin{array}{c}\n\text{(3)} \\
\text{(4)} \\
\text{(5)} \\
\text{(6)} \\
\text{(7)} \\
\text{(8)} \\
\text{(9)} \\
\text{(9)} \\
\text{(1)} \\
\text{(2)} \\
\text{(3)} \\
\text{(4)} \\
\text{(5)} \\
\text{(6)} \\
\text
$$

(1) 500 Hz (2) 333 Hz (3*) 666 Hz (4) 753 Hz

Sol.
$$
f = \frac{2}{2\ell}v_s
$$

Sol.

$$
Hz = 1.5
$$

$$
\therefore f' = f\left(\frac{v_s + v}{v_s}\right) = (660) \left(\frac{330 + \frac{50}{18}}{330}\right) = 660 \left(1 + \frac{50}{18 \times 330}\right)
$$

 $= 666$ Hz.

6. Expression for time in terms of G (universal gravitational constant), h (Planck constant) and c (speed of light) is proportional to: $\frac{50}{(330)}$
al constant), h (Planck constant) and
 $\frac{6h}{c^5}$ (4) $\sqrt{\frac{hc^5}{G}}$

(1)
$$
\sqrt{\frac{Gh}{c^3}}
$$
 (2) $\sqrt{\frac{c^3}{Gh}}$ (3^{*}) $\sqrt{\frac{Gh}{c^5}}$ (4) $\sqrt{\frac{hc^5}{G}}$
\n $t = G^a h^b c^c$
\n $\Rightarrow M^o L^o T = (M^{-1} L^3 T^2)^a (ML^2 T^1)^b (LT^1)^c$
\n $\Rightarrow -a + b = 0 \Rightarrow a = b$
\n $\Rightarrow 3a + 2b + c = 0$
\n $\Rightarrow c = -5a$
\n $\Rightarrow -2a - b - c = 1$
\n $\Rightarrow a = \frac{1}{2}$; $b = \frac{1}{2}$; $c = -\frac{5}{2}$

7. A rod of mass 'M' and length '2L' is suspended at its middle by a wire. It exhibits torsional oscillations; If two masses each of 'm' are attached at distance 'L/2' from its centre on both sides, it reduces the oscillation frequency by 20%. The value of ratio m/M is close to:

(1) 0.57 (2) 0.77 (3*) 0.37 (4) 0.17

$$
\begin{aligned}\n\text{Sol.} \qquad f &= \frac{1}{2\pi} \sqrt{\frac{C}{\left(\frac{ML^2}{3}\right)}} \& 0.8 \ f = \frac{1}{2\pi} \sqrt{\frac{CL^2}{\left(\frac{ML^2}{3} + \frac{mL^2}{2}\right)}} \\
& \Rightarrow \frac{25}{16} = \frac{\frac{ML^2}{3} + \frac{mL^2}{2}}{\frac{ML^2}{3}} \\
& \Rightarrow \frac{25}{16} = 1 + \frac{3m}{2M} \\
& \Rightarrow \frac{9}{16} = \frac{3m}{2M} \\
& \Rightarrow \frac{m}{M} = \frac{3}{8} = 0.37\n\end{aligned}
$$

8. The top of a water tank is open to air and its water level is maintained. It is giving out 0.74 m³ water per minute through a circular opening of 2 cm radius in its wall. The depth of the centre of the opening from the level of water in the tank is close to:

FOUNDATION

(1) 6.0 m
\n**So.**
$$
\frac{dV}{dt} = Av \Rightarrow \frac{dV}{dt} = A\sqrt{2gh}
$$
\n
$$
\Rightarrow \frac{0.74}{60} = (3.14) \left(\frac{2}{100}\right)^2 \sqrt{2(9.8)h}
$$
\n(4) 9.6 m
\n(5) 4.8 m

 \Rightarrow h = 4.92 m

9. Two Carnot engines A and B are operated in series. The first one, A, receives heat at T₁(= 600 K) and rejects to a reservoir at temperature T_2 . The second engine B receives heat rejected by the first engine and, in turn, rejects to a heat reservoir at T $_3$ (= 400 K). Calculate the temperature T $_2$ if the work outputs of the two engines are equal: Perated in series
 IIIT-12. The second

Prvoir at T_3 (= 400 K)
 K (3) B are operated in series. The second engles are the second engles
reservoir at $T_3 (= 400 \text{ K})$. Can be seen to the second engles of the second engles
500 K (3) 600

Sol.
$$
W_1 = W_2
$$

\n⇒ 600-T₂ = T₂ - 400
\n⇒ T₂ = 500 K
\n(3) 600 K
\n(4) 400 K
\n(5)

10. In a car race on straight road, car A takes a time t less than car B at the finish and passes finishing point with a speed 'v' more than that of car B. Both the cars start from rest and travel with constant acceleration a_1 and a_2 respectively. Then 'v' is equal to:

(1*)
$$
\sqrt{a_1 a_2} t
$$
 (2) $\frac{2a_1 a_2}{a_1 + a_2} t$ (3) $\frac{a_1 + a_2}{2} t$ (4) $\sqrt{2a_1 a_2} t$

- **Sol.** $\sqrt{\frac{2\epsilon}{n}} \sqrt{\frac{2\epsilon}{n}} = t \implies \frac{\sqrt{2\epsilon}}{n} = \frac{\sqrt{2\epsilon}}{n}$ 2 γ α_1 γ α_2 $rac{2\ell}{a_2} - \sqrt{\frac{2\ell}{a_1}} = t \Rightarrow \frac{\sqrt{2\ell}}{t} = \frac{\sqrt{a_1 a_2}}{\sqrt{a_1} - \sqrt{a_2}}$ 1 $\sqrt{2}$ 4 V 2 $2a_1\ell - \sqrt{2a_2\ell} = v$ \Rightarrow $\frac{\sqrt{2}\ell}{\ell} = \frac{1}{\sqrt{2\ell}}$ $\overline{\ell} - \sqrt{2a_2 \ell} = v \qquad \Rightarrow \qquad \frac{\sqrt{2\ell}}{v} = \frac{1}{\sqrt{a_1} - \sqrt{a_2}}$ $\Rightarrow \frac{v}{r} = \sqrt{a_1 a_2} \Rightarrow v = (\sqrt{a_1 a_2})t$
- **11.** A parallel plate capacitor with square plates is filled with four dielectrics of dielectric constants K_1 , K_2 , K_3 , K_4 arranged as shown in the figure. The effective dielectric constant K will be:

$$
K_{1} \begin{bmatrix} K_{2} \end{bmatrix} \begin{bmatrix} K_{1} \end{bmatrix} \begin{bmatrix} K_{2} \end{bmatrix} \begin{bmatrix} L/2 \end{bmatrix}
$$

\n
$$
K_{3} \begin{bmatrix} K_{4} \end{bmatrix} \begin{bmatrix} L/2 \end{bmatrix}
$$

\n
$$
K_{4} \begin{bmatrix} L/2 \end{bmatrix}
$$

\n
$$
K_{5} \begin{bmatrix} L/2 \end{bmatrix}
$$

\n
$$
K_{6} \begin{bmatrix} L/2 \end{bmatrix}
$$

\n
$$
K_{7} \begin{bmatrix} K_{1} + K_{2} \end{bmatrix} \begin{bmatrix} K_{2} + K_{3} \end{bmatrix}
$$

\n
$$
(3) K = \frac{(K_{1} + K_{2}) (K_{2} + K_{3} + K_{4})}{2(K_{1} + K_{2} + K_{3} + K_{4})}
$$

\n
$$
(4^{*}) K = \frac{(K_{1} + K_{2}) (K_{2} + K_{4})}{K_{1} + K_{2} + K_{3} + K_{4}}
$$

\nSoI.
$$
C_{1} = \frac{\epsilon_{0} K_{1} \frac{L^{2}}{2}}{\frac{d}{2}} + \frac{\epsilon_{0} K_{3} \frac{L^{2}}{2}}{\frac{d}{2}} = \frac{\epsilon_{0} L^{2}}{d} (K_{1} + K_{3})
$$

\n
$$
\therefore \frac{1}{2} = \frac{1}{c_{1} + \frac{1}{c_{2}}}
$$

\n
$$
\therefore \frac{1}{c} = \frac{1}{c_{1} + \frac{1}{c_{2}}}
$$

\n
$$
\Rightarrow \frac{d}{\epsilon_{0} K L^{2}} = \frac{d}{\epsilon_{0} L^{2} (K_{1} + K_{3})} + \frac{d}{\epsilon_{0} L^{2} (K_{2} + K_{4})}
$$

12. A particle having the same charge as of electron moves in a circular path of radius 0.5 cm under the A particle having the same charge as of electron moves in a circular path of radius 0.5 cm under the influence of a magnetic field of 0.5T. If an electric field of 100 V/m makes it to move in a straight path, then the mass of the particle is (Given charge of electron = 1.6×10^{-19} C)

(1)
$$
1.6 \times 10^{-19}
$$
 kg (2) 1.6×10^{-27} kg (3) 9.1×10^{-31} kg (4^{*}) 2.0×10^{-24} kg

$$
Sol. \qquad eE = evB
$$

$$
\Rightarrow E = \left(\frac{eBr}{m}\right)B
$$

$$
\Rightarrow E = \frac{eB^2r}{E}
$$

$$
\Rightarrow \frac{(1.6 \times 10^{-19})(0.5 \times 10^{-2})}{100} = 2 \times 10^{-24} \text{kg.}
$$

13. A series AC circuit containing an inductor (20 mH), a capacitor (120 μ F) and a resistor (60 Ω) is driven by an AC source of 24V/50Hz. The energy dissipated in the circuit in 60 s is: (1) 3.39×10^3 J (2) 5.65×10^2 J (3*) 5.17×10^2 J (4) 2.26×10^3 J

Sol.
$$
E = Pt = \frac{E^2}{Z^2}Rt = \frac{(24)^2}{60^2 + (8.33\pi - 2\pi)^2}(60)(60) = 518 \text{ J}.
$$

14. A rod of length 50 cm is pivoted at one end. It is raised such that if makes an angle of 30° from the horizontal as shown and released from rest. Its angular speed when it passes through the horizontal (in rad s⁻¹) will be (g = 10 ms⁻²)

rad s⁻¹) will be (g = 10 ms⁻²)
\n(1)
$$
\sqrt{\frac{30}{2}}
$$

\n(2) $\frac{\sqrt{30}}{2}$
\n(3) $\frac{\sqrt{20}}{3}$
\n(4*) $\sqrt{30}$
\nSoI. $mg\frac{\ell}{2}(\frac{1}{2}) = \frac{1}{2}(\frac{m\ell^2}{3})\omega^2$
\n $\Rightarrow \omega = \sqrt{\frac{3g}{2\ell}} = \sqrt{30}$

15. In a Young's double slit experiment, the slits are placed 0.320 mm apart. Light of wavelength λ = 500 nm is incident on the slits. The total number of bright fringes that are observed in the angular range $-30^{\circ} \le \theta \le 30^{\circ}$ is: **IIT AND SITE SET AND READ TO A SITE OF A SITE** Filment, the slits are placed to total number of bright friends

$$
(1) 320 \t(2) 640 \t(3) 321 \t(4*) 641
$$

Sol. $\Delta X_{\text{max}} = d \sin \theta = 0.32 \sin 30 = 0.16 \text{ mm}$

(1) 320 (2) 640 (3) 3
\n
$$
\Delta X_{\text{max}} = d \sin \theta = 0.32 \sin 30 = 0.16 \text{ mm}
$$
\n
$$
\therefore n = \frac{\Delta X_{\text{max}}}{\lambda} = \frac{0.16 \times 10^{-3}}{500 \times 10^{-9}} = \frac{0.16 \times 10^{6}}{500} = \frac{1600}{5} = 320
$$

: Number of Bfs =
$$
(2n + 1) = 641
$$

16. The energy required to take a satellite to a height 'h' above Earth surface (radius of Earth = 6.4×10^3 km) is E_1 and kinetic energy required for the satellite to be in a circular orbit at this height is E_2 . The value of h for which E_1 and E_2 are equal, is:

(1) 6.4×10^3 km (2) 1.28×10^4 km (3) 1.6×10^3 km (4*) 3.2×10^3 km **Sol.** $E_1 = -\frac{GMm}{R+h} - \left(-\frac{GMm}{R}\right)$ $(R+h)$ 2 $E_2 = \frac{1}{2} m \left(\sqrt{\frac{GM}{R+h}} \right)^2 = \frac{GMm}{2(R+h)}$ $E_1 = E_2$; $h = \frac{R}{2}$

17. Two plane mirrors are inclined to each other such that a ray of light incident on the first mirror (M₁) and parallel to the second mirror ($M₂$) is finally reflected from the second mirror ($M₂$) parallel to the first mirror $(M₁)$. The angle between the two mirrors will be:

- **18.** A force acts on a 2 kg object so that its position is given as a function of time as $x = 3t^2 + 5$. What is the work done by this force in first 5 seconds? (1) 875 J (2) 950 J (3) 850 J (4*) 900 J
- **Sol.** $x = 3t^2 + 5$

 \Rightarrow $v = 6t$

 $\Rightarrow \Delta W = \Delta k$

 $v = 6t$
 $\Delta W = \Delta k$
 $= \frac{1}{2}(2)(30^2) - \frac{1}{2}2(0)^2 = 900 \text{ J}$ | [|]

19. In the given circuit the internal resistance of the 18V cell is negligible. If $R_1 = 400 \Omega$, $R_3 = 100 \Omega$ and $R_4 = 500 \Omega$ and the reading of an ideal voltmeter across R_4 is 5V, then the value of R_2 will be:
 R_4 = 500 Ω and the reading of an ideal voltmeter across R_4 is 5V, then the value of R_2 will be:

18V **Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com**

MENIIT

JEE Mains-2019

C

JEE Mains-2019

23. One of the two identical conducting wires of length L is bent in the form of a circular loop and the other one into a circular coil of N identical turns. If the same current is passed in both, the ratio of the magnetic field at the central of the loop (B_L) to that at the centre of the coil (B_c), i.e. $\frac{B_l}{P}$ $\frac{B_L}{B_C}$ will be:

(1) $\frac{1}{N}$ $\frac{1}{N}$ (2*) $\frac{1}{N^2}$ $\frac{1}{N^2}$ (3) N^2 (4) N **Sol.** $B_L = \frac{\mu_o I}{2R}$ $=\frac{\mu}{2}$ $B_c = \frac{\mu_o Ni}{2(R/N)}$ $\frac{B_L}{D} = \frac{1}{N^2}$ $\therefore \frac{B_L}{B_C} = \frac{1}{N}$

- **24.** A 15 g mass of nitrogen gas is enclosed in a vessel at a temperature 27°C. Amount of heat transferred to the gas, so that rms velocity of molecules is doubled, is abou: [Take $R = 8.3$ J/K mole]
	- (1) 6 kJ (2*) 10 kJ (3) 14 kJ (4) 0.9 kJ

Sol.
$$
\Delta Q = \frac{f}{2} nR\Delta T
$$

$$
= \frac{5}{2} \left(\frac{15}{28}\right) (8.3) (1200 - 300) = 10000 \text{ J.}
$$

C

25. In a communication system operating at wavelength 800 nm, only one percent of source frequency is available as signal bandwidth. The number of channels accommodated for transmitting TV signals of is abou: [Take R = 8.3 J/K mole]
 KJ (4) 0.9 KJ
 FOUNDATION
 FOUNDATION
 FOUNDATION
 FOUNDATION
 FOUNDATION
 FOUNDATION

(1^{*}) 6.25 × 10⁵ (2) 3.75 × 10⁶ (3) 3.86 × 10⁶ (4) 4.87 × 10⁵
\n
$$
f = \frac{c}{\lambda} = \frac{3 \times 10^8}{8 \times 10^{-7}} = \frac{3}{8} \times 10^{15} Hz
$$
\n
$$
p = (0.01)f = \frac{3}{8} \times 10^{13}
$$

- band width 6 MHz are (Take velocity of light c = 3 × 10⁸ m/s, h = 6.6 × 10⁻³⁴ J-s)

(1*) 6.25 × 10⁵ (2) 3.75 × 10⁶ (3) 3.86 × 10⁶ (4) 4.8
 $f = \frac{c}{\lambda} = \frac{3 \times 10^8}{8 \times 10^{-7}} = \frac{3}{8} \times 10^{15}$ Hz
 $\therefore n = \frac{(0.01)f}{6$ **Sol.** $f = \frac{c}{\lambda} = \frac{3 \times 10^8}{8 \times 10^{-7}} = \frac{3}{8} \times 10^{15}$ Hz (0.01) f $\frac{3}{8} \times 10^{13}$ $n = \frac{(0.01)\text{f}}{6 \times 10^6} = \frac{\frac{3}{8} \times 10^8}{6 \times 10^6}$ \times $\therefore n = \frac{(8.6 \text{ m})^2}{6 \times 10^6} = \frac{8}{6 \times 10^6}$ $\frac{1}{16}$ × 10⁷ = 6.25 × 10⁵ $=\frac{1}{10} \times 10^{7} = 6.25 \times$ $=\frac{1}{16}\times10^{7}$
- **26.** Charge is distributed within a sphere of radius R with a volume charge density $\rho(r) = \frac{A}{r^2} e^{-2r/a}$ $\frac{A}{r^2}e^{-2r/a}$, where A and *a* are constants. If Q is the total charge of this charge distribution, the radius R is:

(1)
$$
\frac{a}{2} \log\left(1 - \frac{Q}{2\pi aA}\right)
$$
 (2) $a \log\left(\frac{1}{1 - \frac{Q}{2\pi aA}}\right)$ (3) $a \log\left(1 - \frac{Q}{2\pi aA}\right)$ (4^{*}) $\frac{a}{2} \log\left(\frac{1}{1 - \frac{Q}{2\pi aA}}\right)$

MENII

JEE Mains-2019

$$
\begin{aligned}\n\text{Sol.} \qquad \mathbf{Q} &= \int \rho 4\pi^2 \, \text{d}r = \int_0^R \left(\frac{A}{r^2} e^{-\frac{2r}{a}} \right) \left(4\pi r^2 \right) \, \text{d}r \\
&= 4\pi A \frac{a}{2} \left(1 - e^{-\frac{2R}{a}} \right) \\
&\Rightarrow \quad R = \frac{-a}{2} \log \left(1 - \frac{Q}{2\pi A a} \right)\n\end{aligned}
$$

27. Ge and Si diodes start conducting at 0.3 V and 0.7 V respectively. In the following figure if Ge diode connection are reversed, the value of V_0 changes by: (assume that the Ge diode has large breakdown voltage)

28. The energy associated with electric field is (U_F) and with magnetic field is (U_B) for an electromagnetic wave in free space. Then:

(1)
$$
U_E < U_B
$$

\n $B = \frac{E}{C}$
\n $\Rightarrow U_E = \frac{1}{2} \varepsilon_0 E^2$
\n $E^2 = E^2$

Sol.
$$
B = \frac{E}{2}
$$

 $=\frac{L}{C}$

$$
\Rightarrow U_{E} = \frac{1}{2} \epsilon_{o} E^{2}
$$

$$
U_{B} = \frac{B^{2}}{2\mu_{o}} = \frac{E^{2}}{2\mu_{o}C^{2}} = \frac{E^{2}}{2\mu_{o}} (\mu_{o}\epsilon_{o}) = U_{E}
$$

29. The pitch and the number of divisions, on the circular scale, for a given screw gauge are 0.5 mm and 100 respectively. When the screw gauge is fully tightened without any object, the zero of its circular scale lies 3 divisions below the mean line. $\frac{L}{\mu_0 C^2} = \frac{L}{2\mu_0} (\mu_0 \varepsilon,$
the number of complete the screw

The readings of the main scale and the circular scale, for a thin sheet, are 5.5 mm and 48 respectively, the thickness of this sheet is:

$$
(1) 5.950 \text{ mm} \qquad (2^*) 5.725 \text{ mm} \qquad (3) 5.755 \text{ mm} \qquad (4) 5.740 \text{ mm}
$$

Sol. Zero error = $+3 \times \frac{0.5 \text{ mm}}{100} = 0.015 \text{ mm}$ $= +3 \times \frac{3.6 \text{ mm}}{122} =$

 $MSR = 5.5 + 48 \times \frac{0.5}{100}$ $= 5.5 + 48 \times$ $= 5.74$ mm. :. Thickness = $5.74 - 0.015 = 5.725$ mm

30. The magnetic field associated with a light wave is given, at the origin, by B = B₀ [sin (3.14 × 10⁷)ct + sin (6.28 × 10⁷) ct]. If this light falls on a silver plate having a work function of 4.7 eV, what will be the maximum kinetic energy of the photo electrons? $(c = 3 \times 10^8 \text{ ms}^{-1}, h = 6.6 \times 10^{-34} \text{ J-s})$ (1) 12.5 eV (2) 8.52 eV (3) 6.82 eV (4*) 7.72 eV **Sol.** $KE_{max} = hv_{max} - \phi$ $\left(6.6\!\times\!10^{-34}\right)\!\left(6.28\!\times\!10^{7}\right)\!\left(3\!\times\!10^{8}\right)$ 19 (6.6×10^{-34}) (6.28×10^{7}) (3×10^{-34}) 4.7 $1.6 \times 10^{-19} \times 2 \times 3.14$ ÷ $=\frac{\left(6.6\times10^{-34}\right)\left(6.28\times10^{7}\right)\left(3\times10^{8}\right)}{1.6\times10^{-19}\times2\times3.14}-$ **FOUNDATION**

I

| [|]

$$
= 12.37 - 4.7 = 7.67 \text{ eV}
$$

NEE

PART-B-MATHEMATICS

31. The coefficient of t⁴ in the expansion of
$$
\left(\frac{1-t^6}{1-t}\right)^3
$$
 is
\n(1) 12 (2) 10 (3^{*}) 15 (4) 14
\n**Sol.** $(1-t^6)^3(1+t)^3$
\n $(1-t^{18}-3t^6+3t^{12})(1-t)^3$
\n \Rightarrow coefficient of t⁴ in $(1-t)^{-3}$ is ³⁺⁴⁻¹C₄ = ⁶C₂ = 15
\n32. If f(x) = $\int \frac{5x^8 + 7x^6}{(x^2 + 1 + 2x^7)^2} dx$, $(x \ge 0)$, and f(0) = 0, then the value of f(1) is
\n(1) $-\frac{1}{2}$ (2) $\frac{1}{2}$ (3) $\frac{1}{4}$ (4) $-\frac{1}{4}$
\n**Sol.** $\int \frac{5x^8 + 7x^6}{(x^2 + 1 + 2x^7)} dx$
\n $\int \frac{5x^6 + 7x^8}{(x^2 + 1 + 2x^2)^4} dx = \frac{1}{2 + \frac{1}{x^5} + \frac{1}{x^7}} + C$
\nAs f(0) = 0, f(x) = $\frac{x^7}{2x^7 + x^2 + 1}$
\nf(1) = $\frac{1}{4}$

33. A hyperbola has its centre at the origin, passes through the point (4, 2) and has transverse axis of length 4 along the x-axis. Then the eccentricity of the hyperbola is

A hyperbola has its centre at the origin, passes through the point (4, 2) and has
\n4 along the x-axis. Then the eccentricity of the hyperbola is
\n(1)
$$
\sqrt{3}
$$
 (2) $\frac{2}{\sqrt{3}}$ (3) $\frac{3}{2}$ (4) 2
\nGiven hyperbola is

$$
\frac{x^2}{4} - \frac{y^2}{b^2} = 1
$$

Satisfying the point (4,2)

$$
\Rightarrow b^2 = \frac{4}{3}
$$

$$
\Rightarrow e = \frac{2}{\sqrt{3}}
$$

34. If the system of linear equations $x - 4y + 7z = g$

Sol.

 $3y - 5z = h$ $-2x + 5y - 9z = k$ of linear equations (1) $g + h + 2k = 0$ (2) $g + 2h + k = 0$ (3) $2g + h + k = 0$ (4) $g + h + k = 0$ **Sol.** $P_1 = x - 4y + 7z - g = 0$ $P_2 = 3x - 5y - h = 0$ $P_3 = -2x + 5y - 9z - k = 0$ Here $\Lambda = 0$ $2P_1 + P_2 + P_3 = 0$ when $2g + h + k = 0$ **35.** A data consists of n observations: x_1, x_2, \ldots, x_n . If $\sum_{i=1}^n (x_i + 1)^2 = 9n$ and $\sum_{i=1}^n (x_i - 1)^2 = 5n$, then the standard deviation of this data is : (1) $\sqrt{7}$ (2) $\sqrt{5}$ (3) 2
 $\sum (x_i + 1)^2 = 9n$ (1)
 $\sum (x_i - 1)^2 = 5n$ (2)

(1) + (2) $\Rightarrow \sum (x_i^2 + 1) = 7n$
 $\Rightarrow \frac{\sum x_i^2}{n} = 6$

(1) . (2) \Rightarrow 4 $\sum x_i = 4n$
 $\Rightarrow \sum x_i = n$ **Sol.** $\sum (x_i + 1)^2 = 9n$ ………..(1) $\Sigma(x_i - 1)^2 = 5n$ (2) $(1) + (2) \Rightarrow \Sigma(x_i^2 + 1) = 7n$ $\Rightarrow \frac{\sum x_i^2}{n} = 6$ (1) $(2) \Rightarrow 4\Sigma x_i = 4n$ $\Rightarrow \Sigma x_i = n$ $\Rightarrow \frac{\sum x_i}{n} = 1$ \Rightarrow variance = 6 – 1 = 5 \Rightarrow standard deviation = $\sqrt{5}$ **36.** Let a, b and c be the 7^{th,} 11th and 13th terms respectively of a non-constant A.P. If these are also the three consecutive terms of a G.P., then $\frac{a}{c}$ is equal to (1) 2 (2) $\frac{1}{2}$ $(3) \frac{7}{13}$ (4^*) 4 **Sol.** $a = A + 6d$ $b = A + 10d$ $c = A + 12d$ a, b, c are in G.P. \Rightarrow (A + 10d)² = (A + 6d) (a + 12d) erms of a G.P., **I** and 13th terms respectively

$$
\Rightarrow \frac{A}{d} = -14
$$

$$
\frac{a}{c} = \frac{A + 6d}{A + 12d} = \frac{6 + \frac{A}{d}}{12 + \frac{A}{d}} = \frac{6 - 14}{12 - 14} = 4
$$

37. The number of all possible positive integral values of α for which the roots of the quadratic equation $6x^2 - 11x + \alpha = 0$ are rational numbers is

(1) 2 (2^{*}) 3 (3) 4 (4) 5
\n**Sol.** D must be perfect square
\n⇒121-24α = λ²
\n⇒ maximum value of α is 5
\nα = 1⇒ λ∉I
\nα = 3 ⇒ λ ∈I ⇒ 3 integral values
\nα = 4⇒ λ∈I
\nα = 5 ⇒ λ ∈I
\n
$$
\frac{\pi}{3}
$$
 tan θ
\n38. If $\int_{0}^{\frac{\pi}{3}} \frac{\tan \theta}{\sqrt{2k \sec \theta}} d\theta = 1 - \frac{1}{\sqrt{2}}$, (k > 0), then the value of k is:
\n1

38. If
$$
\int_{0}^{3} \frac{\tan \theta}{\sqrt{2k \sec \theta}} d\theta = 1 - \frac{1}{\sqrt{2}}
$$
, $(k > 0)$, then the value of k is:

$$
(1) \ \frac{1}{2} \qquad \qquad (2^*) \ 2 \qquad \qquad (3) \ 4 \qquad \qquad (4) \ 1
$$

 $\underline{\pi}$

Sol. $\frac{1}{\sqrt{2}} \int_0^{\pi/3} \frac{\tan \theta}{\cos \theta} d\theta = \frac{1}{\sqrt{2}} \int_0^{\pi/3}$ $_{0}$ vscco vzn $_{0}$ $\frac{1}{2k} \int_{0}^{\pi/3} \frac{\tan \theta}{\sqrt{\sec \theta}} d\theta = \frac{1}{\sqrt{2k}} \int_{0}^{\pi/3} \frac{\sin \theta}{\sqrt{\cos \theta}} d\theta$

(1)
$$
\frac{1}{2}
$$
 (2^{*}) 2
\n
$$
\frac{1}{\sqrt{2k}} \int_{0}^{\pi/3} \frac{\tan \theta}{\sqrt{\sec \theta}} d\theta = \frac{1}{\sqrt{2k}} \int_{0}^{\pi/3} \frac{\sin \theta}{\sqrt{\cos \theta}} d\theta
$$
\n
$$
= -\frac{1}{\sqrt{2k}} 2 \sqrt{\cos \theta} \Big|_{0}^{\pi/3} = -\frac{\sqrt{2}}{\sqrt{k}} \Big(\frac{1}{\sqrt{2}} - 1 \Big)
$$
\n
$$
\Rightarrow k = 2
$$
\n(3) 4

39. If $0 \le x < \frac{\pi}{2}$, then the number of values of x for which sin x – sin 2x + sin 3x = 0, is then the number
(2) $\frac{4}{5}$

$$
(1^*)\ 2 \qquad \qquad (2)\ 4 \qquad \qquad (3)\ 1 \qquad \qquad (4)\ 3
$$

$$
(4)
$$

Sol. $\sin x - \sin 2x + \sin 3x = 0$ \Rightarrow (sin x + sin3x) – sin2x = 0 \Rightarrow 2sin x. cos x - sin2x = 0 \Rightarrow sin2x (2cos x – 1) = 0 \Rightarrow sin 2x = 0 or cos x = $\frac{1}{2}$ \Rightarrow x = 0, $\frac{\pi}{3}$

40. If the circle $x^2 + y^2 - 16x - 20y + 164 = r^2$ and $(x - 4)^2 + (y - 7)^2 = 36$ intersect at two distinct points, then (1) $r = 11$ (2^{*}) $1 \le r \le 11$ (3) $r > 11$ (4) $0 \le r \le 1$ **Sol.** $x^2 + y^2 - 16x - 20y + 164 = r^2$ $A(8,10),R_1 = r$ $(x-4)^2 + (y-7)^2 = 36$ B (4, 7), $R_2 = 6$ $|R_1 - R_2|$ < AB < R₁ + R₂ \Rightarrow 1 < r < 11 **41.** The sum of following series $1+6+\frac{9(1^2+2^2+3^2)}{7}+\frac{12(1^2+2^2+3^2+4^2)}{9}+\frac{15(1^2+2^2+...+5^2)}{11}+...$ up to 15 terms, is (1) 7510 (2) 7520 (3) 7830 (4*) 7820 **Sol.** $T_n = \frac{(3 + (n+1) \times 3)(1^2 + 2^2 + \dots + n^2)}{(2n+1)}$ 2 2^2 n^2 n $3 + (n + 1) \times 3$ $(1^2 + 2^2 + \dots + n)$ $T_n = \frac{(3 + (n+1) \times 3)(1^2 + 2^2 + \dots + 1)}{(2n+1)}$ $(n+1)(2n+1)$ $(n+1)$ 2 2 n $T_n = \frac{3 \cdot \frac{n^2(n+1)(2n+1)}{6}}{2n+1} = \frac{n^2(n+1)}{2}$ $+1)(2n +$ $=\frac{3.4 \times 10^{-4} \text{ g}}{2 \text{ h}+1} = \frac{\text{m}^2 (\text{h}+1)}{2}$ $S_{15} = \frac{1}{2} \sum_{n=1}^{15} (n^3 + n^2) = \frac{1}{2} \left[\frac{15(15+1)}{2} \right]^2 + \frac{15 \times 16 \times 31}{6}$ $\begin{pmatrix} 2 & 1 \end{pmatrix}$ Σ $= 7820$ **42.** If A = t t t t e^{-t} coet e^{-t} eint e^{-t} eint e^{-t} $\frac{1}{2}$ $\frac{1}{2}$ cint $\frac{1}{2}$ e^{\prime} $e^{-\iota}$ cost $e^{-\iota}$ sint e^t $-e^{-t}$ cost $-e^{-t}$ sint $-e^{-t}$ sint $+e^{-t}$ cost e^{t} $2e^{-t}$ sint $-2e^{-t}$ cost $-t$ contains \sim $-t$ cont e^{-t} cint e^{-t} cint e^{-t} $-t$ cint $2e^{-t}$ e^{t} $\qquad \mathsf{e}^{\mathsf{-t}}$ cost $\qquad \mathsf{e}^{\mathsf{-t}}$ sint e^t $-e^{-t} \cos t - e^{-t} \sin t$ $-e^{-t} \sin t + e^{-t} \cos t$ e^{t} 2e^{-t} sint $-2e^{-t}$ cost , then A is (1) not invertible for any $t \in R$. (2*) invertible for all $t \in R$ (3) invertible only if $t = \frac{\pi}{2}$ (4) invertible only if $t = \pi$. **Sol.** $|A| = e^{-t}$ 1 cost sint $A = e^{-t}$ 1 $-cost$ - $sin t$ $-sint$ - $cost$ 1 2sint -2cost -1 cost sint $= e^{-t} \begin{vmatrix} 1 & -\cos t - \sin t & -\sin t + \cos t \end{vmatrix}$ $\begin{bmatrix} 1 & 2\sin t & -2\cos t \end{bmatrix}$ = e^{-t} [5 cos²t + 5 sin² t] $\forall t \in R$ $=5e^{-t} \neq 0 \forall t \in R$ bonly if $t = \frac{\pi}{2}$

cost

cost – sint – sin $\begin{bmatrix} e^{-t} \sin t \\ -2e^{-t} \cos t \end{bmatrix}$,
-2e^{-t} cost (2*) **CULPANT** $e^{-t} \sin t$
 $+e^{-t} \cos t$, the
 $-2e^{-t} \cos t$

R. (2*) inv

43. The logical statement $\lceil \sim (p \land q) \lor (p \land r) \rceil \land (\sim q \land r)$ is equivalent to

Sol.

JEE Mains-2019

(1) $(p \wedge \sim q) \vee r$ (2) $\sim p \vee r$ (3*) $(p \wedge r) \wedge \sim q$ (4) $(\sim p \wedge \sim q) \wedge r$ **Sol.** $[\sim (\sim p \vee q) \wedge (p \wedge r)] \cap (\sim q \wedge r)$ $= [(p \land \sim q) \lor (p \land r)] \land (\sim q \land r)$ $=$ [p \wedge (~ q \vee r)] \wedge (~ q \wedge r) $= p \wedge (\sim q \wedge r)$ $= (p \wedge r) \sim q$

44. The area of the region A = $\{(x, y) : 0 \le y \le x \mid x \mid + 1 \text{ and } -1 \le x \le 1\}$ in sq. units, is

(1)
$$
\frac{1}{3}
$$
 (2) $\frac{2}{3}$ (3^{*}) 2 (4) $\frac{4}{3}$
The graph is a follows

$$
\int_{-1}^{0} (-x^2 + 1) dx + \int_{0}^{1} (x^2 + 1) dx = 2
$$

$$
y = -x^2 + 1
$$

$$
\int_{-1}^{0} (-x^2 + 1) dx + \int_{0}^{1} (x^2 + 1) dx = 2
$$
\n
\ny = -x² + 1\n
\ny = -x² + 1\n
\ny = -x² + 1

45. An urn contains 5 red and 2 green balls. A ball is drawn at random from the urn. If the drawn ball is green, then a red ball is added to the urn and if the drawn ball is red, then a green ball is added to the urn; the original ball is not returned to the urn. Now, a second ball is drawn at random from it. The probability that the second ball is red, is: **Sol.** E₁: Event of drawing a Red ball and placing a green ball in the bage. % he urn and if the drawn ball

o the urn. Now, a second bal
 $\frac{27}{49}$

ball and placing a green bal

h ball and placing a red ball

$$
(1) \frac{26}{49} \qquad (2) \frac{27}{49} \qquad (3) \frac{21}{49} \qquad (4^*) \frac{32}{49}
$$

 $E₂$: Event of drawing a green ball and placing a red ball in the bag

E : Event of drawing a red ball in second draw $P(E) = P(E_1) \times P\left(\frac{\overline{E}}{E_1}\right) + P(E_2) \times P\left(\frac{\overline{E}}{E_2}\right)$ $P(E) = P(E_1) \times P\left(\frac{E}{E_1}\right) + P(E_2) \times P\left(\frac{E}{E_2}\right)$ $= P(E_1) \times P\left(\frac{E}{E_1}\right) + P(E_2) \times P\left(\frac{E}{E_2}\right)$ Frawing a red ba

$$
=\frac{5}{7}\times\frac{4}{7}+\frac{2}{7}\times\frac{6}{7}=\frac{32}{49}
$$

46. Let f: $[0, 1] \rightarrow \mathbb{R}$ be such that f (xy) = f (x) \cdot f (y), for all x, $y \in [0, 1]$ and f (0) \neq 0. If $y = y(x)$ satisfies the differential equation, $\frac{dy}{dx}$ = f (x) with y (0) = 1, then $y\left(\frac{1}{4}\right) + y\left(\frac{3}{4}\right)$ is equal to (1) 5 (2) 4 (3) 2 (4*) 3

Sol. $f(xy) = f(x) \cdot f(y)$ $f(0) = 1$ as $f(0) \neq 0$ \Rightarrow f (x) = 1 $\frac{dy}{dx} = f(x) = 1$ \Rightarrow y = x + c At, $x = 0$, $y = 1 \Rightarrow c = 1$ $y = x + 1$ \Rightarrow y $\left(\frac{1}{4}\right) + y \left(\frac{3}{4}\right) = \frac{1}{4} + 1 + \frac{3}{4} + 1 = 3$

47. Let A = {x \in R: x is not a positive integer}. Define a function f: A \rightarrow R as f (x) = $\frac{2x}{x-1}$, then f is

(1*) injective but not surjective (2) not injective

-
- (3) neither injective nor surjective (4) surjective but not injective
-

SPIDER

Sol. $f(x) = 2\left(1 + \frac{1}{x-1}\right)$

$$
f'(x) = \frac{2}{(x-1)^2}
$$

 \Rightarrow of is one – one but not onto

48. Let the equation of two sides of a triangle be 3x – 2y + 6 = 0 and 4x + 5y – 20 = 0. If the orthocentre of this triangle is at (1, 1), then the equation of its third side is:

(1^{*}) π (2) 0 (3) 10 (4) 7 π

m lies in the interval:

50. If both the roots of the equation x² - mx + 4 = 0 are real and distinct and they lie in the interval [1, 5], then
\nm lies in the interval:
\n(1⁺) (4, 5) (2) (5, 6) (3) (3, 4) (4) (-5, -4)
\n501. x² - mx + 4 = 0
\nα, β ∈ [1,5]
\n(1) D > 0⇒ m² - 16 > 0
\n⇒ μ ∈ (-α, -4) ∪(4, α)
\n(2) f(1) ≥ 0 ⇒ 5 − m ≥ 0 ⇒ m ∈ (-α, 5)
\n(3) f(5) ≥ 0 ⇒ 29 − 5m ≥ 0 ⇒ me (−α, 5)
\n(4) 1
$$
\times
$$
 $\frac{-b}{2\alpha} < 5$ ⇒ 1 \times $\frac{m}{2} < 5$ ⇒ m ∈ (2, 10)
\n⇒ m ∈ (4, 5)
\nNo option correct : Bonus
\n* If we consider α, β ∈ (1, 5) then option (1) is correct.
\n51. If x = 3 tan t and y = 3 sec t, then the value of at t = $\frac{d^2y}{dx^2}$, $\frac{\pi}{4}$ is
\n(1⁺) $\frac{1}{6\sqrt{2}}$ (2) $\frac{1}{3\sqrt{2}}$ (3) $\frac{1}{6}$ (4) $\frac{3}{2\sqrt{2}}$
\n50I. $\frac{dx}{dt} = 3 sec^3 t$
\n $\frac{dy}{dt} = 3 sect$ tan t

$$
\frac{dy}{dx} = \frac{\tanh t}{\sec^2 t} = \sin t
$$
\n
$$
= \frac{\cosh t}{3 \sec^2 t} = \frac{\cos^3 t}{3} = \frac{1}{3 \cdot 2 \sqrt{2}} = \frac{1}{6\sqrt{2}}
$$
\n**52.** The number of natural numbers less than 7,000 which can be formed by using the digits 0, 1, 3, 7, 9
\n(repetition of digits allowed) is equal to
\n(1⁺) 374 (2) 250 (3) 375 (4) 372
\n**53.** If the lines $x = ay + b$, $z = cy + d$ and $x = a'z + b'$, $y = cz + d$ are perpendicular, then
\n(1) bb⁺ + cc⁺ + 1 = 0 (2') aa⁺ + c⁺ = 0 (3) ab⁺ + bc⁺ + 1 = 0 (4) cc⁺ + a + a' = 0
\n**50.** Line $x = ay + b$, $z = cy + d$
\n
$$
\Rightarrow \frac{x - b'}{a} = \frac{y - d'}{c} = \frac{z}{c}
$$
\nGiven both the lines are perpendicular.
\n
$$
\Rightarrow aa^+ + C^+ + C = 0
$$
\n
$$
\Rightarrow \frac{x - b'}{a} = \frac{y - d'}{c} = \frac{z}{c}
$$
\nGiven both the lines are perpendicular.
\n
$$
\Rightarrow aa^+ + C^+ + C = 0
$$
\n**51.** Let z be a differentiable function from R to R such that $\left| f(x) - f(y) \right| \le 2|x - y|^{3/2}$, for all $x, y \in R$.
\n**53.** Let f be a differentiable function from R to R such that $\left| f(x) - f(y) \right| \le 2|x - y|^{3/2}$, for all $x, y \in R$.
\nIf $f(0) = 1$ then $\int_0^1 f'(x) dx$ is equal to
\n(1⁺) 1 (2) $\frac{1}{2}$ (3) 2 (4) 0
\n**50.** If $(x) - f(y) || \le 2|x - y|^{3/2}$
\nd

$$
{\color{blue}\textbf{mem}}
$$

$$
\left| \frac{f(x) - f(y)}{x - y} \right| \le |2|x - y|^{1/2}
$$

Apply limit x \to y

$$
|f'(y)| \le 0 \Rightarrow f'(y) = 0 \Rightarrow f(y) = c \Rightarrow f(x) = 1
$$

$$
\int_{0}^{1} 1 \cdot dx = 1
$$

56. Let $\vec{a} = \hat{i} + \hat{j} + \sqrt{2}\hat{k}$, $\vec{b} = b_1\hat{i} + b_2\hat{j} + \sqrt{2}\hat{k}$ and $\vec{c} = 5\hat{i} + \hat{j} + \sqrt{2}\hat{k}$ be three vectors such that the projection vector of \vec{b} on \vec{a} is is perpendicular to \vec{c} , then $|\vec{b}|$ is equal to

(1)
$$
\sqrt{22}
$$
 (2*) 6 (3) $\sqrt{32}$ (4) 4
\n**Sol.** Projection of \vec{b} on $\vec{a} = \frac{\vec{a}.\vec{b}}{|\vec{a}|} = |\vec{a}|$
\n $\Rightarrow b_1 + b_2 = 2$ (1)
\nand $(\vec{a} + \vec{b}) \perp |\vec{c} \Rightarrow (\vec{a} + \vec{b}).\vec{c} = 0$
\n $\Rightarrow 5b_1 + b_2 = -10$ (2)
\nForm (1) and (2) $\Rightarrow b_1 = -3$ and $b_2 = 5$
\nthan $|\vec{b}| = \sqrt{b_1^2 + b_2^2 + 2} = 6$

57. Let A $(4, -4)$ and B $(9, 6)$ be points on the parabola, $y^2 = 4x$. Let C be chosen on the arc AOB of the parabola, where O is the origin, such that the area of ACB is maximum. Then, the area (in sq. units) of ACB, is

AACB, is
\n(1)
$$
31\frac{3}{4}
$$
 (2) $30\frac{1}{4}$ (3*) $31\frac{1}{4}$ (4) 32
\nFor maximum area, tangent at the
\npoint c must be parallel to chord BC,

Sol. For maximum area, tangent at the point c must be parallel to chord BC.

 $(4)0$

JEE Mains-2019

58. Let S be the set of all triangles in the xy-plane, each having one vertex at the origin and the other two vertices lie on coordinate axes with integral coordinates. If each triangle in S has area 50 sq. units, then the number of elements in the set S is

$$
(1^*) 36 \t(2) 32 \t(3) 18 \t(4) 9
$$

Sol. Let A $(\alpha,0)$ and B $(0, \beta)$ be the vectors of the given triangle AOB

 $\Rightarrow |\alpha\beta| = 100$

- \Rightarrow Number of triangles
- $= 4 \times$ (number of divisors of 100)
- $= 4 \times 9 = 36$
- **59.** Let z_0 be a root of the quadratic equation, $x^2 + x + 1 = 0$. If $z = 3 + 6i$ $z_0^{81} 31z_0^{83}$, then arg z is equal to

(3) $\frac{\pi}{6}$

$$
(1^*) \frac{\pi}{4} \qquad (2) \frac{\pi}{3}
$$

Sol. $z = \omega$ or ω^2 (where ω is a non – real cube root of unity)

$$
z = 3 + 6i(\omega)^{81} - 3i(\omega)^{93}
$$

$$
z = 3 + 3i
$$

$$
\Rightarrow \arg z = \frac{\pi}{4}
$$

60. The equation of the plane containing the straight line $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ and perpendicular to the plane $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ and perpendicular to

containing the straight lines $\frac{x}{3} = \frac{y}{4} = \frac{z}{2}$ and $\frac{x}{4} = \frac{y}{2} = \frac{z}{3}$ is (1) $5x + 2y - 4z = 0$ (2) $3x + 2y - 3z = 0$ (3) $x - 2y + z = 0$ (4) $x + 2y - 2z = 0$

Vector along the normal to the plane containing the lines
 $\frac{x}{3} = \frac{y}{4} = \frac{z}{2}$ and $\frac{x}{4} = \frac{y}{2} = \frac{z}{3}$ is $(8\hat{i} - \hat{j} - 10\hat{k})$.

Vect $3x + 2y - 3z = 0$ (3) x -
 $x - 5z = 0$ +

Sol. Vector along the normal to the plane containing the lines

$$
\frac{x}{3} = \frac{y}{4} = \frac{z}{2}
$$
 and $\frac{x}{4} = \frac{y}{2} = \frac{z}{3}$ is $(8\hat{i} - \hat{j} - 10\hat{k}).$

Vector perpendicular to the vectors $2\hat{i} + 3\hat{j} + 4\hat{k}$ and $8\hat{i} - \hat{j} - 10\hat{k} - 52\hat{j} + 26\hat{k}$

So, required plane is
$$
26x - 52y + 26z + 0 \Rightarrow x - 2y + z = 0
$$

MENIIT

JEE Mains-2019

PART-C-CHEMISTRY

61. The correct statement regarding the given Ellingham diagram is:

- (1) At 800°C, Cu can be used for the extraction of Zn from ZnO. (2) At 500°C, coke can be used for the extraction of Zn from ZnO. (3*) At 1400°C, Al can be used for the extraction of Zn from ZnO. (4) Coke cannot be used for the extraction of Cu from $Cu₂O$.
- **Sol.** $4AI + 6ZnO \longrightarrow 2AI + 6Zn$ ΔH for the above reaction is –ve.
- **62.** Which of the following compounds is not aromatic?

N $\begin{bmatrix} 1 \end{bmatrix}$
 IIT-JEEP SEPTEMBER
 IIT-
 I $-$ ve.
ounds is not aromatic?
(3)

Property

Sol.

 Φ Is anti aromatic

- **63.** The transition element that has lowest enthalpy of atomisation, is -(1) Fe (2) Zn (3) V (4*) Cu
- **Sol.** Due to weak metallic bonding.
- **64.** For the following reaction, the mass of water produced from 445 g of $C_{57}H_{110}O_6$ is: $2C_{57}H_{110}O_6(s) + 163 O_2(g) \rightarrow 114CO_2(g) + 110H_2O(l)$

65. For coagulation of arsenious sulphide sol, which one of the following salt solution will be most effective? (1) NaCl (2) Na₃PO₄ $(3)^*$ AlCl₃ (4) BaCl₂

Sol. As₂S₃ is a negatively charged sol. so AlCl₃ will be most effective.

66. The major product of the following reaction is

67. For the reaction, $2A + B \rightarrow$ products, when the concentration of A and B both were doubled, the rate of the reaction increased from 0.3 mol L⁻¹ s⁻¹ to 2.4 mol L⁻¹ s⁻¹. When the concentration of A alone is

doubled, the rate increased from 0.3 mol L⁻¹ s⁻¹ to 0.6 L⁻¹ s⁻¹. Which one of the following statements is correct?

- (1) Order of the reaction with respect to A is 2.
- (2) Total order of the reaction is 4.
- (3) Order of the reaction with respect to B is 1.
- (4*) Order of the reaction with respect to B is 2.
- **Sol.** $2A + B \longrightarrow$ products

Rate = $K[A]^x[B]^y$ r = K[A]^x[B]^y - - - - (i) $0.3 = K[A]^x[B]^y - \cdots (1)$ 2.4 = K[2A]^x[2B]^y - - - - (2) $0.6 = K[2A]^x[B]^y - - - (3)$ From (1), (2) & (3) $x = 1, y = 2$ Overall order = $2 + 1 = 3$ Order w.r.t $A = 1$ Order w.r.t $B = 2$

- **68.** The complex that has highest crystal field splitting energy (Δ) , is: (1) $[Co(NH₃₎_{5}Cl]Cl₂$ (2) $[Co(NH₃₎_{5}(H₂O)]Cl₃$ (3*) $K_3[Co(CN)_6]$ (4) $K_2[CoCl_4]$ **FOUNDATION**
 FOUNDATION
 FOUNDATION
 FOUNDATION
 FOUNDATION
- **Sol.** As CN⁻ is a strong field ligand. K_3 [Co(CN)₆] will have maximum ' Δ '.
- **69.** The correct match between **Item-I** and **Item-II** is **I**
 IIT-
 IIT-
 IIT-
 IET-
 IET-
 IET-
 IET-
 IET-
 IET-
 IET-
 IET-

- (A) Benzaldehyde (P) Mobile phase
- (B) Alumina (Q) Adsorbent (C) Acetonitrile (R) Adsorbate $\mathsf{H}\mathsf{H}\mathsf{H}\mathsf{H}\mathsf{H}$ and **Item-II** is
 Item-I and **Item-II** is
 Item-II

(P) Mo

(Q) Add

$$
(1) (A) \rightarrow (Q); (B) \rightarrow (P); (C) \rightarrow (R)
$$

- (3) $(A) \rightarrow (Q)$; $(B) \rightarrow (R)$; $(C) \rightarrow (P)$
- (2) (A) \rightarrow (P); (B) \rightarrow (R);(C) \rightarrow (Q) (4^*) $(A) \rightarrow (R)$; $(B) \rightarrow (Q)$; $(C) \rightarrow (P)$

Sol. Acetonitrile is used as mobile phase for most of the reverse chromatography. Benzaldehyde is adsorbed on alumina.

70. The increasing basicity order of the following compounds is:

(A) CH3CH2NH2 (B) (C) (D) CH2CH3 CH3CH2NH CH3 H3C–N–CH3 CH3 Ph–N–H

JEE Mains-2019 (1) $(A) < (B) < (D) < (C)$ (2^{*}) $(D) < (C) < (A) < (B)$ (3) (A) < (B) < (C) < (D) (4) (D) < (C) < (B) < (A) **Sol.** Correct order of basic strength is $NH_2(Et)_2$ > EtNH₂ > NMC₃ > Ph – NH – CH₃ **71.** Which of the following combination of statements is true regarding the interpretation of the atomic orbitals? (a*) An electron in an orbital of high angular momentum stays away from the nucleus than an electron in the orbital of lower angular momentum. (b) For a given value of the principal quantum number, the size of the orbit is inversely proportional to the azimuthal quantum number. (c) According to wave mechanics, the ground state angular momentum is equal to $h/2\pi$. (d) The plot of Ψ vs r for various azimuthal quantum numbers, shows peak shifting towards higher r value. (1) (a), (c) (2) (b), (c) (3) (a), (d) **Sol.** Refer Theory **72.** The pH of rain water, is approximately: (1^*) 5.6 (2) 6.5 (3) 7.0 (4) 7.5 **Sol.** Fact based. **73.** The metal that forms nitride by reacting directly with N₂ of air, is : (1) Rb (2^*) Li (3) Cs (4) K **Sol.** The only alkali metal which forms nitride by reacting directly with N_2 is 'Li'. **74.** At 100°C, copper (Cu) has FCC unit cell structure with cell edge length of x Å. What is the approximate density of Cu (in g cm⁻³) at this temperature? [Atomic mass of Cu = 63.55 u] (1) 205 x $(2^*)\frac{422}{\sqrt{3}}$ x $(3) \frac{105}{\sqrt{3}}$ x $(4) \frac{211}{\sqrt{3}}$ x Sol. a ZM $=\frac{\sum w_i}{N_a a}$ **75.** If the standard electrode potential for a cell is 2V at 300K, the equilibrium constant (K) for the reaction: $Zn(s) + Cu^{2+}(aq) \ell Zn^{2+}(aq) + Cu(s)$ At 300K is approximately. $[R = 8 \text{ JK}^{-1} \text{ mol}^{-1}, F = 96000 \text{ C mol}^{-1})$ (1) e^{320} (2) e^{-160} (3) e^{-80} (4*) e^{160} **Sol.** $Zn(s) + Cu^{2+}(aq) \ell Zn^{2+}(aq) + Cu(s)$ **NEET** Intride by reacting
 III cell structure w

Imperature? [Atomi **FOUNDATION**
 FOUNDATION
 FOUNDATION
 FOUNDATION Li (3) Cs

orms nitride by reacting dire

CC unit cell structure with c

nis temperature? [Atomic m
 $\frac{422}{x^3}$ (3) $\frac{105}{x^3}$

MENIT

JEE Mains-2019

–nFEcell = –RTnk 2 96500 2 nK 160.83 8 300 K = e¹⁶⁰ **76.** Homoleptic octahedral complexes of a metal ion M3+ with three monodentate ligands L1, L2 and L3 absorb wavelengths in the region of green, blue and red respectively. The increasing order of the ligand strength is: (1*) L3 < L1< L2 (2) L2 < L1< L3 (3) L3 < L2< L1 (4) L1 < L2< L3 **Sol.** L**¹** L2 L3 Green Blue Red absorbed wave length Order of Red > Green > Blue L3 > L1 > L2 Strength of ligand 1/ Strength of ligand L2 > L1 > L3 **77.** The major product formed in the following reaction is: (1) (2*) (3) (4) **Sol.** O O CH3 dil NaOH ⁺ H3C H OH ^O H3C H O OH H3C OH O H3C H O H3C OH O Ph–C = CH2 + CH3 – C – H CH3–CH–CH2–C–Ph O– O H2O CH3–CH–CH2–C–Ph OH O O Ph–C–CH3 NaOH [Ph–C–CH2 OΘ O Ph–C = CH2] O– Θ enolate ion **NEET IIT-JEE FOUNDATION** | [|]

78. Consider the following reversible chemical reactions:

Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com

A₂(g) + B₂(g)
$$
\frac{K_1}{2}
$$
 $\frac{2(0)K_1}{2}$ $\frac{2(0)K_2}{2}$ $\frac{3A_2(g) + 2B_2(g)}{2}$ (1)
\n $6AB(g) \frac{K_2}{8} = 3A_2(g) + 2B_2(g)$ (2)
\nThe relation between K₁ and K₂ is :
\n(1) K₂ = K₁³ (2) K₁K₂ = 3 (3°) K₂ = K₁³ (4) K₁K₂ = $\frac{1}{3}$
\n**Sol.** A₂(g) + B₂(g) $\frac{K_2}{2}$ $\frac{3A_2(g) + 2B_2(g)}{3}$ (2)
\n $3. K_2 = (\frac{1}{K_1}) \Rightarrow K_2 = K_1^3$
\n79. The major product of the following reaction is:
\n $6H_2$ (i) $\frac{8H_2}{W_1}$ (ii) $1.0\frac{H_2}{W_1}$
\n(ii) $1.0\frac{H_1}{W_1}$
\n(i) $\frac{6H_2}{W_1}$ (j) $\frac{H_1}{W_1}$
\n(ii) $1.0\frac{H_1}{W_1}$
\n(ii) $1.0\frac{H_1}{W_1}$
\n(ii) $1.0\frac{H_1}{W_1}$
\n(i) $\frac{H_1}{W_1}$
\n(ii) $\frac{H_2}{W_1}$
\n(i) $\frac{H_1}{W_1}$
\n(ii) $\frac{H_1}{W_1}$
\n(i) $\frac{H_2}{W_1}$
\n(ii) $\frac{H_1}{W_1}$
\n(i) $\frac{H_2}{W_1}$
\n(ii) $\frac{H_1}{W_1}$
\n(i) $\frac{H_2}{W_1}$
\n(ii) <

80. Which of the following conditions in drinking water causes methemoglobinemia? (1) > 50 ppm of chloride (2) > 50 ppm of lead (3) > 100 ppm of sulphate (4^*) > 50 ppm of nitrate **Sol.** Fact based **81.** When the first electron gain enthalpy $(\Delta_{eq}H)$ of oxygen is – 141 kJ/mol, its second electron gain enthalpy is: (1) a more negative value than the first (2) negative, but less negative than the first (3^{*}) a positive value (3^{*}) a positive value (4) almost the same as that of the first. **Sol.** 2nd electron gain enthalpy of oxygen is positive. **82.** Good reducing nature of H₃PO₂ is attributed to the presence of: (1) Two P–OH bonds (2*) Two P–H bonds (3) One P–OH bond (4) One P–H bond **Sol.** Refer theory **83.** The entropy change associated with the conversion of 1 kg of ice at 273 K to water vapours at 383 K is : (Specific heat of water liquid and water vapour are 4.2 kJ K^{-1} kg⁻¹ and 2.0 kJ K^{-1} kg⁻¹; heat of liquid fusion and vapourisation of water are 334 kJ kg⁻¹ and 2491 kJ kg⁻¹, respectively). (log 273 = 2.436, log 373 = 2.572, log 383 = 2.583) (1) 8.49 kJ kg⁻¹ K⁻¹ (2) 7.90 kJ kg⁻¹ K⁻¹ (3*) 9.26 kJ kg⁻¹ K⁻¹ (4) 2.64 kJ kg⁻¹ K⁻¹ **Sol.** $H_2O(s) \longrightarrow H_2O(\ell) \longrightarrow H_2O(\ell) \longrightarrow H_2O(q) \longrightarrow H_2O(q)$ 1 kg 1 kg 1 kg at 273 K at 273 K at 373 K at 373 K at 383 K $\Delta S = \Delta S_1 + \Delta S_2 + \Delta S_3 + \Delta S_4$ $\begin{array}{l} H_2O(s) \longrightarrow H_2O(\ell) \longrightarrow H_2O(\ell) \longrightarrow H_2O(g) \longrightarrow H_2$ **84.** The temporary hardness of water is due to: (1) Na_2SO_4 (2) CaCl₂ (3) NaCl (4*) Ca(HCO₃)₂ **Sol.** Fact based. **85.** The tests performed on compound X and their inferences are: **Test Inference** (a) 2,4-DNP test Coloured precipitate (b) Iodoform test Yellow precipitate (c) Azo-dye test No dye formation **NET**
 NETTING

(2) C Found (4) One P–H bond

FOUND (4) One P–H bond

Kg of ice at 273 K to water vapours
 $\frac{1}{2}$ K^{–1} kg^{–1} and 2.0 kJ K^{–1} kg^{–1}; heat of

kg^{–1}, respectively). $H_2O(\ell) \longrightarrow H_2O(g)$

1 kg

at 373 K at 373 K

2 $\ell n \frac{383}{373} = 9.267 \text{ KJ Kg}^{-1} \text{K}^{-1}$

Compound 'X' is:

Sol. \therefore -COCH₃ is present it will show both 2, 4-DNP & iodoform test. Due to steric inhibition of resonance. I.P of 'N' is not involved in delocalization so coupling reaction will not take place.

86. The correct sequence of amino acids present in the tripeptide given below is:

87. A solution containing 62 g ethylene glycol in 250 g water is cooled to – 10°C. If K_f for water is 1.86 K kg mol $^{-1}$, the amount of water (in g) separated as ice is: (1*) 64 (2) 16 (3) 32 (4) 48 **Sol.** Let moles of $H₂O$ separated as ice = x gm

 ΔT_f = iK_fm

$$
10 = 1 \times 1.86 \frac{\frac{62}{62}}{\frac{250 - x}{1000}}
$$

X = 64 gm

88. The major product obtained in the following reaction is:

89. In which of the following processes, the bond order has increased and paramagnetic character has changed to diamagnetic? **IIT-**
 IIT-
 IIT-
 IIT-
 IIT-
 IIT-
 IIT-
 IIT-

90. The products formed in the reaction of cumene with $O₂$ followed by treatment with dil. HCl are:

Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com

